import os from io import StringIO import pandas as pd import requests from dagster import asset import dagster as dg import datetime import pendulum IE_ENDPOINT = "https://publicreporting.elections.ny.gov/IndependentExpenditure" def get_cookies(s: requests.Session, from_date: datetime.date, to_date: datetime.date): """Fetch cookies into session""" cookie_postdata = { 'lstUCOfficeType': '0', 'ddlType': '', 'txtName': '', 'txtExpenderName': '', 'txtExpenseRecipientName': '', 'lstUCCounty': '', 'lstUCMuncipality': '', 'lstUCOffice': '', 'lstUCDistrict': '', 'txtDateFrom': from_date.strftime('%m/%d/%Y'), 'txtDateTo': to_date.strftime('%m/%d/%Y'), 'lstUCYear': '- Select -', 'ddlDateType': 'Submitted', 'ddlSearchBy': 'All' } return s.post(f"{IE_ENDPOINT}/BindIndExpData/", json=cookie_postdata) def gen_ie_query(from_date: datetime.date, to_date: datetime.date): """Fill in query parameters for independent expenditures and date range""" return { 'lstUCOfficeType': '0', 'lstUCCounty': '', 'lstUCMuncipality': '', 'ddlSearchBy': '1', 'txtFilerId': '', 'txtName': '', 'txtExpenderName': '', 'ddlAutoCompleteConName': '', 'txtExpenseRecipientName': '', 'lstAutoCompleteCommittee': '', 'lstElectionType': '', 'lstUCDistrict': '', 'ddlSelectDate': '2', 'lstUCYear': '- Select -', 'txtDateFrom': from_date.strftime('%m/%d/%Y'), 'txtDateTo': to_date.strftime('%m/%d/%Y'), 'ddlDateType': '2', 'Command': 'CSV', 'gridView24HourIE_length': '10', } @asset( group_name="nyboe", compute_kind="NYBOE API", partitions_def=dg.DailyPartitionsDefinition(start_date="2025-05-10") ) def fetch_expenditures(context: dg.AssetExecutionContext) -> None: """Fetch the day before the partition date""" end_date = pendulum.parse(context.partition_key).subtract(days=1) start_date = end_date.subtract(days=1) with requests.Session() as s: res = get_cookies(s, start_date, end_date) if not res.json()["aaData"]: return None req = s.get(f"{IE_ENDPOINT}/IndependentExpenditure", params=gen_ie_query(start_date, end_date), ) df = pd.read_csv(StringIO(req.text), index_col=False) os.makedirs("data", exist_ok=True) with open(f"data/expenditures_{end_date.format("YYYYMMDD")}.parquet", "wb") as f: df.to_parquet(f) return None # @asset(deps=[topstory_ids], group_name="nyboe", compute_kind="HackerNews API") # def topstories(context: AssetExecutionContext) -> MaterializeResult: # """Get items based on story ids from the HackerNews items endpoint. It may take 30 seconds to fetch all 100 items. # API Docs: https://github.com/HackerNews/API#items # """ # with open("data/topstory_ids.json") as f: # topstory_ids = json.load(f) # results = [] # for item_id in topstory_ids: # item = requests.get(f"https://hacker-news.firebaseio.com/v0/item/{item_id}.json").json() # results.append(item) # if len(results) % 20 == 0: # context.log.info(f"Got {len(results)} items so far.") # df = pd.DataFrame(results) # df.to_csv("data/topstories.csv") # return MaterializeResult( # metadata={ # "num_records": len(df), # Metadata can be any key-value pair # "preview": MetadataValue.md(df.head().to_markdown()), # # The `MetadataValue` class has useful static methods to build Metadata # } # ) # @asset(deps=[topstories], group_name="nyboe", compute_kind="Plot") # def most_frequent_words(context: AssetExecutionContext) -> MaterializeResult: # """Get the top 25 most frequent words in the titles of the top 100 HackerNews stories.""" # stopwords = ["a", "the", "an", "of", "to", "in", "for", "and", "with", "on", "is"] # topstories = pd.read_csv("data/topstories.csv") # # loop through the titles and count the frequency of each word # word_counts = {} # for raw_title in topstories["title"]: # title = raw_title.lower() # for word in title.split(): # cleaned_word = word.strip(".,-!?:;()[]'\"-") # if cleaned_word not in stopwords and len(cleaned_word) > 0: # word_counts[cleaned_word] = word_counts.get(cleaned_word, 0) + 1 # # Get the top 25 most frequent words # top_words = { # pair[0]: pair[1] # for pair in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:25] # } # # Make a bar chart of the top 25 words # plt.figure(figsize=(10, 6)) # plt.bar(list(top_words.keys()), list(top_words.values())) # plt.xticks(rotation=45, ha="right") # plt.title("Top 25 Words in Hacker News Titles") # plt.tight_layout() # # Convert the image to a saveable format # buffer = BytesIO() # plt.savefig(buffer, format="png") # image_data = base64.b64encode(buffer.getvalue()) # # Convert the image to Markdown to preview it within Dagster # md_content = f"![img](data:image/png;base64,{image_data.decode()})" # with open("data/most_frequent_words.json", "w") as f: # json.dump(top_words, f) # # Attach the Markdown content as metadata to the asset # return MaterializeResult(metadata={"plot": MetadataValue.md(md_content)})