got initial fetching working
This commit is contained in:
154
quickstart_etl/assets/nyboe.py
Normal file
154
quickstart_etl/assets/nyboe.py
Normal file
@@ -0,0 +1,154 @@
|
|||||||
|
import os
|
||||||
|
from io import StringIO
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import requests
|
||||||
|
from dagster import asset
|
||||||
|
import dagster as dg
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
import pendulum
|
||||||
|
|
||||||
|
IE_ENDPOINT = "https://publicreporting.elections.ny.gov/IndependentExpenditure"
|
||||||
|
|
||||||
|
def get_cookies(s: requests.Session, from_date: datetime.date, to_date: datetime.date):
|
||||||
|
"""Fetch cookies into session"""
|
||||||
|
cookie_postdata = {
|
||||||
|
'lstUCOfficeType': '0',
|
||||||
|
'ddlType': '',
|
||||||
|
'txtName': '',
|
||||||
|
'txtExpenderName': '',
|
||||||
|
'txtExpenseRecipientName': '',
|
||||||
|
'lstUCCounty': '',
|
||||||
|
'lstUCMuncipality': '',
|
||||||
|
'lstUCOffice': '',
|
||||||
|
'lstUCDistrict': '',
|
||||||
|
'txtDateFrom': from_date.strftime('%m/%d/%Y'),
|
||||||
|
'txtDateTo': to_date.strftime('%m/%d/%Y'),
|
||||||
|
'lstUCYear': '- Select -',
|
||||||
|
'ddlDateType': 'Submitted',
|
||||||
|
'ddlSearchBy': 'All'
|
||||||
|
}
|
||||||
|
|
||||||
|
return s.post(f"{IE_ENDPOINT}/BindIndExpData/", json=cookie_postdata)
|
||||||
|
|
||||||
|
def gen_ie_query(from_date: datetime.date, to_date: datetime.date):
|
||||||
|
"""Fill in query parameters for independent expenditures and date range"""
|
||||||
|
return {
|
||||||
|
'lstUCOfficeType': '0',
|
||||||
|
'lstUCCounty': '',
|
||||||
|
'lstUCMuncipality': '',
|
||||||
|
'ddlSearchBy': '1',
|
||||||
|
'txtFilerId': '',
|
||||||
|
'txtName': '',
|
||||||
|
'txtExpenderName': '',
|
||||||
|
'ddlAutoCompleteConName': '',
|
||||||
|
'txtExpenseRecipientName': '',
|
||||||
|
'lstAutoCompleteCommittee': '',
|
||||||
|
'lstElectionType': '',
|
||||||
|
'lstUCDistrict': '',
|
||||||
|
'ddlSelectDate': '2',
|
||||||
|
'lstUCYear': '- Select -',
|
||||||
|
'txtDateFrom': from_date.strftime('%m/%d/%Y'),
|
||||||
|
'txtDateTo': to_date.strftime('%m/%d/%Y'),
|
||||||
|
'ddlDateType': '2',
|
||||||
|
'Command': 'CSV',
|
||||||
|
'gridView24HourIE_length': '10',
|
||||||
|
}
|
||||||
|
|
||||||
|
@asset(
|
||||||
|
group_name="nyboe",
|
||||||
|
compute_kind="NYBOE API",
|
||||||
|
partitions_def=dg.DailyPartitionsDefinition(start_date="2025-05-10")
|
||||||
|
)
|
||||||
|
def fetch_expenditures(context: dg.AssetExecutionContext) -> None:
|
||||||
|
"""Fetch the day before the partition date"""
|
||||||
|
end_date = pendulum.parse(context.partition_key).subtract(days=1)
|
||||||
|
|
||||||
|
start_date = end_date.subtract(days=1)
|
||||||
|
with requests.Session() as s:
|
||||||
|
res = get_cookies(s, start_date, end_date)
|
||||||
|
if not res.json()["aaData"]:
|
||||||
|
return None
|
||||||
|
|
||||||
|
req = s.get(f"{IE_ENDPOINT}/IndependentExpenditure",
|
||||||
|
params=gen_ie_query(start_date, end_date),
|
||||||
|
)
|
||||||
|
df = pd.read_csv(StringIO(req.text), index_col=False)
|
||||||
|
os.makedirs("data", exist_ok=True)
|
||||||
|
with open(f"data/expenditures_{end_date.format("YYYYMMDD")}.parquet", "wb") as f:
|
||||||
|
df.to_parquet(f)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
# @asset(deps=[topstory_ids], group_name="nyboe", compute_kind="HackerNews API")
|
||||||
|
# def topstories(context: AssetExecutionContext) -> MaterializeResult:
|
||||||
|
# """Get items based on story ids from the HackerNews items endpoint. It may take 30 seconds to fetch all 100 items.
|
||||||
|
|
||||||
|
# API Docs: https://github.com/HackerNews/API#items
|
||||||
|
# """
|
||||||
|
# with open("data/topstory_ids.json") as f:
|
||||||
|
# topstory_ids = json.load(f)
|
||||||
|
|
||||||
|
# results = []
|
||||||
|
# for item_id in topstory_ids:
|
||||||
|
# item = requests.get(f"https://hacker-news.firebaseio.com/v0/item/{item_id}.json").json()
|
||||||
|
# results.append(item)
|
||||||
|
|
||||||
|
# if len(results) % 20 == 0:
|
||||||
|
# context.log.info(f"Got {len(results)} items so far.")
|
||||||
|
|
||||||
|
# df = pd.DataFrame(results)
|
||||||
|
# df.to_csv("data/topstories.csv")
|
||||||
|
|
||||||
|
# return MaterializeResult(
|
||||||
|
# metadata={
|
||||||
|
# "num_records": len(df), # Metadata can be any key-value pair
|
||||||
|
# "preview": MetadataValue.md(df.head().to_markdown()),
|
||||||
|
# # The `MetadataValue` class has useful static methods to build Metadata
|
||||||
|
# }
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
# @asset(deps=[topstories], group_name="nyboe", compute_kind="Plot")
|
||||||
|
# def most_frequent_words(context: AssetExecutionContext) -> MaterializeResult:
|
||||||
|
# """Get the top 25 most frequent words in the titles of the top 100 HackerNews stories."""
|
||||||
|
# stopwords = ["a", "the", "an", "of", "to", "in", "for", "and", "with", "on", "is"]
|
||||||
|
|
||||||
|
# topstories = pd.read_csv("data/topstories.csv")
|
||||||
|
|
||||||
|
# # loop through the titles and count the frequency of each word
|
||||||
|
# word_counts = {}
|
||||||
|
# for raw_title in topstories["title"]:
|
||||||
|
# title = raw_title.lower()
|
||||||
|
# for word in title.split():
|
||||||
|
# cleaned_word = word.strip(".,-!?:;()[]'\"-")
|
||||||
|
# if cleaned_word not in stopwords and len(cleaned_word) > 0:
|
||||||
|
# word_counts[cleaned_word] = word_counts.get(cleaned_word, 0) + 1
|
||||||
|
|
||||||
|
# # Get the top 25 most frequent words
|
||||||
|
# top_words = {
|
||||||
|
# pair[0]: pair[1]
|
||||||
|
# for pair in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:25]
|
||||||
|
# }
|
||||||
|
|
||||||
|
# # Make a bar chart of the top 25 words
|
||||||
|
# plt.figure(figsize=(10, 6))
|
||||||
|
# plt.bar(list(top_words.keys()), list(top_words.values()))
|
||||||
|
# plt.xticks(rotation=45, ha="right")
|
||||||
|
# plt.title("Top 25 Words in Hacker News Titles")
|
||||||
|
# plt.tight_layout()
|
||||||
|
|
||||||
|
# # Convert the image to a saveable format
|
||||||
|
# buffer = BytesIO()
|
||||||
|
# plt.savefig(buffer, format="png")
|
||||||
|
# image_data = base64.b64encode(buffer.getvalue())
|
||||||
|
|
||||||
|
# # Convert the image to Markdown to preview it within Dagster
|
||||||
|
# md_content = f"})"
|
||||||
|
|
||||||
|
# with open("data/most_frequent_words.json", "w") as f:
|
||||||
|
# json.dump(top_words, f)
|
||||||
|
|
||||||
|
# # Attach the Markdown content as metadata to the asset
|
||||||
|
# return MaterializeResult(metadata={"plot": MetadataValue.md(md_content)})
|
||||||
Reference in New Issue
Block a user