appears to be working

This commit is contained in:
Alex Fox
2025-05-20 14:50:53 +00:00
parent 1683426275
commit 216a8f7c3b
3 changed files with 20 additions and 132 deletions

View File

@@ -1,96 +0,0 @@
import base64
import json
import os
from io import BytesIO
import matplotlib.pyplot as plt
import pandas as pd
import requests
from dagster import AssetExecutionContext, MaterializeResult, MetadataValue, asset
@asset(group_name="hackernews", compute_kind="HackerNews API")
def topstory_ids() -> None:
"""Get up to 100 top stories from the HackerNews topstories endpoint.
API Docs: https://github.com/HackerNews/API#new-top-and-best-stories
"""
newstories_url = "https://hacker-news.firebaseio.com/v0/topstories.json"
top_new_story_ids = requests.get(newstories_url).json()[:100]
os.makedirs("data", exist_ok=True)
with open("data/topstory_ids.json", "w") as f:
json.dump(top_new_story_ids, f)
@asset(deps=[topstory_ids], group_name="hackernews", compute_kind="HackerNews API")
def topstories(context: AssetExecutionContext) -> MaterializeResult:
"""Get items based on story ids from the HackerNews items endpoint. It may take 30 seconds to fetch all 100 items.
API Docs: https://github.com/HackerNews/API#items
"""
with open("data/topstory_ids.json") as f:
topstory_ids = json.load(f)
results = []
for item_id in topstory_ids:
item = requests.get(f"https://hacker-news.firebaseio.com/v0/item/{item_id}.json").json()
results.append(item)
if len(results) % 20 == 0:
context.log.info(f"Got {len(results)} items so far.")
df = pd.DataFrame(results)
df.to_csv("data/topstories.csv")
return MaterializeResult(
metadata={
"num_records": len(df), # Metadata can be any key-value pair
"preview": MetadataValue.md(df.head().to_markdown()),
# The `MetadataValue` class has useful static methods to build Metadata
}
)
@asset(deps=[topstories], group_name="hackernews", compute_kind="Plot")
def most_frequent_words(context: AssetExecutionContext) -> MaterializeResult:
"""Get the top 25 most frequent words in the titles of the top 100 HackerNews stories."""
stopwords = ["a", "the", "an", "of", "to", "in", "for", "and", "with", "on", "is"]
topstories = pd.read_csv("data/topstories.csv")
# loop through the titles and count the frequency of each word
word_counts = {}
for raw_title in topstories["title"]:
title = raw_title.lower()
for word in title.split():
cleaned_word = word.strip(".,-!?:;()[]'\"-")
if cleaned_word not in stopwords and len(cleaned_word) > 0:
word_counts[cleaned_word] = word_counts.get(cleaned_word, 0) + 1
# Get the top 25 most frequent words
top_words = {
pair[0]: pair[1]
for pair in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:25]
}
# Make a bar chart of the top 25 words
plt.figure(figsize=(10, 6))
plt.bar(list(top_words.keys()), list(top_words.values()))
plt.xticks(rotation=45, ha="right")
plt.title("Top 25 Words in Hacker News Titles")
plt.tight_layout()
# Convert the image to a saveable format
buffer = BytesIO()
plt.savefig(buffer, format="png")
image_data = base64.b64encode(buffer.getvalue())
# Convert the image to Markdown to preview it within Dagster
md_content = f"![img](data:image/png;base64,{image_data.decode()})"
with open("data/most_frequent_words.json", "w") as f:
json.dump(top_words, f)
# Attach the Markdown content as metadata to the asset
return MaterializeResult(metadata={"plot": MetadataValue.md(md_content)})

View File

@@ -57,11 +57,16 @@ def gen_ie_query(from_date: datetime.date, to_date: datetime.date):
'gridView24HourIE_length': '10',
}
NY_DAILY_PARTITION = dg.DailyPartitionsDefinition(
start_date="2025-01-01",
timezone="America/New_York",
)
@dg.asset(
group_name="nyboe",
compute_kind="NYBOE API",
partitions_def=dg.DailyPartitionsDefinition(start_date="2025-05-10"),
)
partitions_def=NY_DAILY_PARTITION,
)
def fetch_expenditures(context: dg.AssetExecutionContext) -> dg.MaterializeResult:
"""Fetch the day before the partition date"""
end_date = pendulum.parse(context.partition_key).subtract(days=1)

View File

@@ -1,5 +1,7 @@
from pathlib import Path
import dagster as dg
from dagster import (
Definitions,
ScheduleDefinition,
@@ -14,39 +16,16 @@ from dagster._core.definitions.metadata.source_code import AnchorBasedFilePathMa
from . import assets
daily_refresh_schedule = ScheduleDefinition(
job=define_asset_job(name="all_assets_job"), cron_schedule="0 0 * * *"
)
@op
def foo_op():
return 5
@graph_asset
def my_asset():
return foo_op()
my_assets = with_source_code_references(
[
my_asset,
*load_assets_from_package_module(assets),
]
)
my_assets = link_code_references_to_git(
assets_defs=my_assets,
git_url="https://github.com/dagster-io/dagster/",
git_branch="master",
file_path_mapping=AnchorBasedFilePathMapping(
local_file_anchor=Path(__file__).parent,
file_anchor_path_in_repository="examples/quickstart_etl/quickstart_etl/",
),
nyboe_assets = with_source_code_references(load_assets_from_package_module(assets))
nyboe_job = define_asset_job("nyboe_job", selection=nyboe_assets)
daily_job_schedule = dg.build_schedule_from_partitioned_job(
nyboe_job,
hour_of_day=1,
minute_of_hour=9,
default_status=dg.DefaultScheduleStatus.RUNNING,
)
defs = Definitions(
assets=my_assets,
schedules=[daily_refresh_schedule],
assets=nyboe_assets,
schedules=[daily_job_schedule],
)